

Introduction to SAR Polarimetry

Erika Podest

29 November 2017

Acknowledgements

From NASA:

- Bruce Chapman
- Michael Denbina
- Scott Hensley
- Marco Lavalle
- Yunling Lou
- Marc Simard
- UAVSAR team
- Armstrong Flight Research Center

From Alaska Satellite Facility:

Brian Huberty

Learning Objectives

- The received radar signal provides information about properties of <u>scatterers</u> on the ground
- More information is gained by studying different polarizations
- Our objective is to provide a brief introduction to polarimetry and familiarize students with:
 - Mathematical representation
 - Data format
 - Data processing for land cover mapping

Source: ESA- ASAR Handbook

Outline

- Why polarimetry?
- 2. Polarization
- 3. Scattering mechanisms
- 4. Data and software
- 5. Processing Sentinel-1 dual-pol images
- 6. Processing UAVSAR quad-pol images
- 7. Display the results

Why Polarimetry?

Optical Imagery: Libreville, Gabon,

L-Band SAR Imagery: Libreville, Gabon,

Polarization

Polarization

- Radars produce electromagnetic waves. The direction of the electric field lies in the plane perpendicular to the direction of propagation and defines the polarization of the wave.
- Dual-pol instruments:
 - Transmit H or V, receive H and V simultaneously
- Quad-pol instruments:
 - Transmit H and V on alternate pulses, receive H and V simultaneously
- The amount of returned signal for different polarizations depends on the physics of the interaction of microwaves with the surface

transmit

		Н	V
	Н	НН	VH
	V	HV	VV

Polarimetry

- The study of using multiple polarimetric returns to infer information about a surface
- Applications include:
 - Cryosphere
 - Vegetation
 - Hydrology

Vegetation Volume in Southeast Brazil

 $0 \text{ m}^3/\text{ha}$

 $325 \text{ m}^3/\text{ha}$

Gama, F. F., Santos, J. R., & Mura, J. C. (2010). Eucalyptus Biomass and Volume Estimation Using Interferometric and Polarimetric SAR Data. Remote Sensing, 2(4), 939-956. doi:10.3390/rs2040939

Polarimetry

- Two complementary approaches to studying polarimetry:
 - Theoretical models predict how polarized signal interacts with different media
 - Observations made with remote sensing instruments reveal polarization signatures for a range of land cover types

Vegetation Volume in Southeast Brazil

 $0 \text{ m}^3/\text{ha}$

 $325 \text{ m}^3/\text{ha}$

Gama, F. F., Santos, J. R., & Mura, J. C. (2010). Eucalyptus Biomass and Volume Estimation Using Interferometric and Polarimetric SAR Data. Remote Sensing, 2(4), 939-956. doi:10.3390/rs2040939

Multiple Polarizations

Scattering Mechanisms

Scattering Mechanisms

- Quantifying scattering mechanisms starts by encoding the received radar signal in a <u>scattering matrix</u>
- In the quad pol scenario, we can represent the received signal with a 3x3 T3 coherency matrix:

$$\bullet \quad [\top] = \frac{1}{2} \begin{bmatrix} \langle |S_{HH} + S_{VV}|^2 \rangle & \langle (S_{HH} + S_{VV})(S_{HH} - S_{VV})^* \rangle & 2\langle (S_{HH} + S_{VV})S_{HV}^* \rangle \\ \langle (S_{HH} - S_{VV})(S_{HH} + S_{VV})^* \rangle & \langle |S_{HH} - S_{VV}|^2 \rangle & 2\langle (S_{HH} - S_{VV})S_{HV}^* \rangle \\ 2\langle S_{HV}(S_{HH} + S_{VV})^* \rangle & 2\langle S_{HV}(S_{HH} - S_{VV})^* \rangle & 4\langle |S_{HV}|^2 \rangle \end{bmatrix}$$

- * denotes conjugation and < > denotes averaging

Scattering Mechanisms

- All 9 elements in the T matrix are calculated for each pixel in your image.
- We employ <u>polarimetric decompositions</u> to obtain a small set of parameters to classify scattering mechanisms

H-α Decomposition

 Based on eigenvalue / eigenvector decomposition of the T3 matrix

$$[T] = [U_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [U_3]^{*T}$$

$$[U_3] = \begin{bmatrix} \cos \alpha_1 & \cos \alpha_2 & \cos \alpha_3 \\ \sin \alpha_1 \cos \beta_1 e^{i\delta_1} & \sin \alpha_2 \cos \beta_2 e^{i\delta_2} & \sin \alpha_3 \cos \beta_3 e^{i\delta_3} \\ \sin \alpha_1 \sin \beta_1 e^{i\gamma_1} & \sin \alpha_2 \sin \beta_2 e^{i\gamma_2} & \sin \alpha_3 \sin \beta_3 e^{i\gamma_3} \end{bmatrix}$$

 Eigenvalues are used to calculate <u>entropy</u> (H), which is a function of noise owing to depolarization

entropy:
$$H = \sum_{i=1}^3 p_i \log_3 p_i$$
 $0 \le H \le 1$ $p_i = \frac{\lambda_i}{\sum_{q=1}^3 \lambda_q}$

H-α Decomposition

 Based on eigenvalue / eigenvector decomposition of the T3 matrix

$$[T] = [U_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [U_3]^{*T}$$

$$[U_3] = \begin{bmatrix} \cos \alpha_1 & \cos \alpha_2 & \cos \alpha_3 \\ \sin \alpha_1 \cos \beta_1 e^{i\delta_1} & \sin \alpha_2 \cos \beta_2 e^{i\delta_2} & \sin \alpha_3 \cos \beta_3 e^{i\delta_3} \\ \sin \alpha_1 \sin \beta_1 e^{i\gamma_1} & \sin \alpha_2 \sin \beta_2 e^{i\gamma_2} & \sin \alpha_3 \sin \beta_3 e^{i\gamma_3} \end{bmatrix}$$

Eigenvalues are used to calculate <u>entropy</u>
 (H), which is a function of noise owing to depolarization

entropy:
$$H = \sum_{i=1}^3 p_i \log_3 p_i$$
 $0 \le H \le 1$ $p_i = \frac{\lambda_i}{\sum_{q=1}^3 \lambda_q}$

alpha:
$$\alpha = \sum_{i=1}^{3} p_i \alpha_i \quad 0 \le \alpha \le \frac{\pi}{2}$$

Figure from Jagdhuber, Thomas, et al. "Identification of soil freezing and thawing states using SAR polarimetry at C-Band." Remote Sensing 6.3 (2014): 2008-2023.

H-α Classification

Feasible region in α -H plane for random media scattering problems.

- Two-parameter system used to classify different types of scattering behavior
- 9 Zones
- Results from this unsupervised classification can be combined with other layers and used as inputs for a supervised classifier.
- For example: Qi, Zhixin, et al. "A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data." Remote Sensing of Environment118 (2012): 21-39.

Cloude, Shane R., and Eric Pottier. "An entropy based classification scheme for land applications of polarimetric SAR." IEEE Transactions on Geoscience and Remote Sensing 35.1 (1997): 68-78.

H-α Classification

Cloude, Shane R., and Eric Pottier. "An entropy based classification scheme for land applications of polarimetric SAR." IEEE Transactions on Geoscience and Remote Sensing 35.1 (1997): 68-78.

H-α Classification

Cloude, Shane R., and Eric Pottier. "An entropy based classification scheme for land applications of polarimetric SAR." IEEE Transactions on Geoscience and Remote Sensing 35.1 (1997): 68-78.

Processing Sentinel-1 Data

Sentinel-1 Download from the Alaska Satellite Facility

https://vertex.daac.asf.alaska.edu/

- Spaceborne instrument operated by ESA
- C band (5-cm wavelength)
- Two polarizations:
 - VH, VV
- GRD (Ground Range Detected) product
- 10 meters spatial posting
- Product ID:
 - \$1A_IW_GRDH_1SDV_20160320T050613_ 20160320T050638_010448_00F805_14D5
- Acquired on March 20, 2016
- Download the zip file

Sentinel-1 Process in SNAP

- Process following the steps in the tutorial "SAR Processing and Data Analysis"
- Outputs two files:
 - -VV
 - VH

Processing UAVSAR

Uninhabited Aerial Synthetic Aperture Radar (UAVSAR)

https://uavsar.jpl.nasa.gov

- Airborne instrument operated by NASA
- L band (24-cm wavelength)
- Fully polarimetric
- GRD (Ground Range Detected) product
- 6 meters posting

Uninhabited Aerial Synthetic Aperture Radar (UAVSAR)

https://uavsar.jpl.nasa.gov

- Product ID:
 - Mondah_27080_16015_000_16030 8_L090_CX_02
- Acquired on March 03, 2016
- Download all 6 *GRD files as well as annotation file *ANN

https://earth.esa.int/web/polsarpro/download/version-5.0

- PolSARpro is developed under contract with ESA since 2003.
 The IETR (Institute of Electronics and Telecommunications of Rennes -UMR CNRS 6164) of the University of Rennes 1, France is in charge of the development of the PolSARpro software.
- Windows and Linux; it is possible to compile on MacOSX from Linux source files

https://earth.esa.int/web/polsarpro/download/version-5.0

- GUI or command line
- Open source
- We will show command line routines but an example practice with GUI is here:

https://uavsar.jpl.nasa.gov/science/workshops/presentations2015/UAV SAR_Workshop2015_Polarimetry_Tutorial_(Chapman).pdf

PolSARap

make quicklooks

import files from UAVSAR, ALOS,

polarimetric decomposition, classification

 You can call any function with no arguments to see the expected inputs

```
#cd to directory
Soft/data_process_sngl./wishart_h_a_
alpha classifier.exe
```

PolSARPro will warn you about the lack of arguments, then provide the usage

```
Not enough input arguments
 Usage:
wishart_h_a_alpha_classifier.exe
Parameters:
                        input directory
 (string)
                -id
 (string)
                -od
                        output directory
 (string)
                -iodf
                        input-output data format
 (int)
                        Nwin Row
 (int)
                        Nwin Col
                -nwc
 (int)
                        Offset Row
 (int)
                        Offset Col
 (int)
                -fnr
                        Final Number of Row
 (int)
                -fnc
                        Final Number of Col
 (string)
                        input entropy file
 (string)
                -af
                        input anisotropy file
 (string)
                        input alpha file
                        maximum interation number
 (int)
                -nit
                        maximum of pixel switching classes
 (float)
                -pct
                        BMP flag (0/1)
 (int)
                -bmp
                        input colormap8 file (valid if BMP flag = 1)
 (string)
                -co8
                        input colormap16 file (valid if BMP flag = 1)
 (string)
                -co16
Optional Parameters:
                        mask file (valid pixels)
 (string)
                -mask
                        Allocated memory for blocksize determination (in Mb)
 (int)
                -mem
 (string)
                -errf
                        memory error file
                        displays this message
 (noarq)
                -help
                        displays the help concerning Data Format parameter
 (noarg)
                -data
```

A processing error occured!

Ingest UAVSAR Files and Make a T3 Matrix

```
uavsar convert MLC.exe -hf Mondah 27080 16015 000 160308 L090 CX 02.ann\
-if1 Mondah 27080 16015 000 160308 L090HHHH CX 02.grd
-if2 Mondah 27080 16015 000 160308 L090HHHV CX 02.grd \
                                                             input rows and
-if3 Mondah 27080 16015 000/160308 L090HHVV CX 02.grd \
                                                                 columns
-if4 Mondah_27080_16015_000/160308_L090HVHV_CX_02.grd \
-if5 Mondah 27080 16015 000 160308 L090HVVV CX 02.grd \
-if6 Mondah 27080 16015 000 160308 L090VVVV CX 02.grd
-od T3 -odf T3 -inr 3750 -inc 12618 -ofr 0 -ofc 0 -fnr 3750 -fnc 12618
-nlr 2 -nlc 2 -ssr 1 -ssc 1
 taking looks
                    I called the output
```

directory 'T3'

$H-\alpha$ Decomposition and Classification

```
h a alpha decomposition.exe -id T3 -od decomposition -iodf T3 \
-nwr 7 -nwc 7 -ofr 0 -ofc 0 -fnr 1875 -fnc 6309 \
-fl1 0 -fl2 1 -fl3 1 -fl4 1 -fl5 0 -fl6 0 -fl7 0 -fl8 0 -fl9 0
-od is the output directory, I'm calling it 'decomposition'
-id is the input directory with T3 elements, I'm calling it 'T3'
-nwr and nwc is the window size used to calculate coherence (7x7)
-fnr and fnc refer to number of rows and cols from config.txt file
-If are flags to indicate the desired output files (alpha, entropy, lambda)
h a alpha planes classifier.exe -id decomposition -od
classification -ofr 0 -ofc 0 -fnr 1875 -fnc 6309 -hal 1 -han 0
-anal 0 -clm Planes H A Alpha ColorMap9.pal
-od is the output directory, I'm calling it 'classification'
```

Make an ENVI Header

```
ENVIdescription = { File Imported into ENVI.}
samples = 6309
lines = 1875
bands = 1
header offset = 0
file type = ENVI Standard
data type = 4
interleave = bsq
sensor type = Unknown
byte order = 0
map info = {Geographic Lat/Lon, 1.5000, 1.5000,
9.17956764, 0.60482616, 1.1112000000e-04,
1.1112000000e-04, WGS-84,
units=Degrees}coordinate system string
={GEOGCS["GCS_WGS_1984",DATUM["D_WGS 1984",SPHE
ROID["WGS 1984",6378137.0,298.257223563]],PRIME
M["Greenwich", 0.0], UNIT["Degree", 0.017453292519
9433]]}
wavelength units = Unknown
```

- From PolSARPro config.txt file:
 - Nrow
 - Ncol
- From UAVSAR annotation file:
 - Center Latitude of Upper Left
 Pixel of Image
 - Center Longitude of Upper Left Pixel of Image
 - Multiply GRD Latitude Pixel
 Spacing by 2 since we took 2
 looks: 0.00005556 *2 =
 0.0011112

Display the Results

Sentinel-1 Polarization Ratios

V۱	/	1	ш	\ /\	V
V	7	V	П	V	V

	Specular	Surface	Double Bounce	Volume	
dB	Open Water	Runway	Buildings	Forest	Tall Mangroves
VV Mar 20	-16.0	-11.7	-0.5	-4.5	-4.2
VH Mean (Mar 20, 08)	-19.5	-16.5	-13	-10.9	-11.9
VV Mar 08	-17.0	-12.6	-0.5	-5.6	-4.3

UAV-SAR Alpha-Decomposition Results

Lambda

UAVSAR- Entropy Decomposition Results, slide 38 UAVSAR-Lamda **Decomposition Results**

Low Entropy 0 < H < 1 High Entropy

	Open Water	Runway	Buildings	Forest	Tall Mangroves
Alpha (α)	36	29	55	42	46
Entropy (H)	0.15	0.67	0.45	0.89	0.79
Lambda					

Classification Results from Entropy and Alpha Decompositions

	Open Water	Runway	Buildings	Forest	Tall Mangroves
Alpha (α)	36	29	55	42	46
Entropy (H)	0.15	0.67	0.45	0.89	0.79
Lambda	0.009	0.007	0.55	0.085	0.067

Entropy + Alpha

Additional Resources

- Land Remote Sensing course from the European Space Agency:
 - http://seom.esa.int/landtraining2014/files/LTC2014_Programme_Materials.
 pdf
- Polarimetry tutorials accompanying PolSARPro:
 - https://earth.esa.int/web/polsarpro/polarimetry-tutorial
- Natural Resources Canada tutorial:
 - http://www.nrcan.gc.ca/node/9579

Thank you!